Scaling PHP
Applications

By Steve Corona

Scaling PHP

Steve Corona
This book is for sale at http://leanpub.com/scalingphp
This version was published on 2013-02-18

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

Leanpub

—_———

©2012 - 2013 Steve Corona

http://leanpub.com/scalingphp
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Steve Corona by spreading the word about this book on Twitter!
The suggested hashtag for this book is #scalingphp.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#scalingphp

http://twitter.com
https://twitter.com/search/#scalingphp
https://twitter.com/search/#scalingphp

Contents

Preface
How this book cametobe
How this book is designed L
Who should read thisbook?
What you need for thisbook Lo

Getting Started
What’s wrong with LAMP?
The Scalable Stack

DNS
DNS Load Distribution e
DNS Resolution o e

Load Balancer
HAPTIOXY . . . o o e
Choosing the best hardware
Automatic failover with keepalived
Tuning linux for a network heavyload,

Issues atscale L,

App Server
Choosing the right versionof PHP
Nginx and PHP-FPMo
Choosing the best hardware for your application server
Using a PHP Opcodecache
Tuning Linux for PHP

Scaling session handling Lo

10

14
14
20
21
23
24

CONTENTS

Database Server
Getting NoSQL Performance out of MySQL
Dealing with libmysql’s inability to set timeouts
Tuning your MySQL Configuration
Tuning Linux for an intensive database L.
Load balancing MySQL Slaves
Accepting the Masterasa SPOF
Understanding issues with NUMA
Choosing the best hardware
Online Schema Changes

Further Topics e

Cache Server
Choosing between Redis, Memcached, and APC
Redis Commands
The importance of Atomic Operations
Performance Limitationsof Redis
Installing Redis from Dotdeb L
Installing the phpredis Cextension
Tuning Redis for Performance L o o
Scaling Redis to Multiple Servers
“The Dogpile”
Russian Doll Caching
Redis Bitmaps
Redis Notification Feeds

Worker Server

WritingaResque Job
Alternativesto Resque

Things you should putinaqueue L.

45
45
48
53
64
69
74
77
80
83
85

86
86
89
93
94
94
95
96
99
101
104
108
110

CONTENTS

Code

Scaling your code

Capistrano for code deployment

Live Debugging PHP with strace

Parting Advice

Sending Feedback and Testimonials

In too deep? Need help ASAP? L

About the Author

Sponsors

125
125
129
132

134
134
134
135

136

Preface

How this book came to be

In 2009, I met Noah Everett, founder and CEO of Twitpic through a job posting he advertised on
Twitter. Noah is a smart, self-taught programmer, quite literally thrown into scaling when Twitpic
blew up. Subsequently, my job interview was less of an interview and more me introducing Noah
to memcache and how it could be setup within the next hour—up till that point the site crashed
regularly. An hour of free consulting for a life changing job opportunity? Sounds good to me.

When I started at Twitpic, the infrastructure was a mix of different servers and FreeBSD versions,
backed up by a steaming pile of PHP-inlined HTML. Queries were naive and uncached. Remember...
Twitpic was built in a weekend—it was a side project for Noah to share pictures with a couple of his
friends.

In the beginning, Noah and I had to schedule our lives around our laptops. Going to the grocery
store? Bring the laptop. Headed out on a date? Don’t forget the laptop. Twitpic was like a jealous
girlfriend, only in this case, one waiting to crash at a moments notice. I never knew when I'd have
to pop into a Starbucks to restart Apache.

Mostly out of necessity, and because no one enjoys cuddling with their laptop at night, we learned.
We scaled. We improved our infrastructure. By no means is our setup perfect, but we've learned
an incredible amount, and after three years I think we’ve built a pretty solid infrastructure. What
happens when servers go down in the middle of the night today? Nothing. I sleep peacefully through
the night, because we’ve built a horizontal, replicated system that is designed for failure.

How this book is designed

This book, although PHP centric, can be applied to any language. Most of the tricks, techniques,
and design patterns will apply cleanly to Ruby, Python, Java or really anything besides Visual Basic
(ok, maybe even VB too).

This book reads like a cookbook, or maybe even a choose your own adventure story—you don’t need
to read it in order, or cover to cover. Jump around to different chapters or sections, digging into the
ones that pique your interest the most.

I've laid out the chapters so they move from the outside of the stack, level-by-level, subsequently
getting deeper until we hit the code.

Preface 2

Who should read this book?

This book is designed for startups, entrepreneurs and smart people that love to hustle and build
things the right way.

You should know PHP, your current stack and your way around Linux. My readers are smart
and intelligent people that don’t need their hands held. I explain complicated topics and provide
thorough examples, but this book is NOT simply regurgitated documentation—it includes real world
scenarios and use-cases.

What you need for this book

At a minimum, you need a PHP application that you want to learn how to scale. And you’ll probably
see the most benefit if you have a Linux server that you can deploy to. Don’t have one? I really like
Rackspace Cloud' or Amazon EC2? for testing because you can setup and tear down servers quickly,
and launch multi-server test setups cheaply.

"http://www.rackspace.com/cloud/public/servers/
*http://aws.amazon.com/ec2/

http://www.rackspace.com/cloud/public/servers/
http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/public/servers/
http://aws.amazon.com/ec2/

Getting Started

What's wrong with LAMP?

LAMP (Linux, Apache, MySQL, PHP) is the most popular web development stack in the world. It’s
robust, reliable and everyone knows how to use it. So, what’s wrong with LAMP? Nothing. You can
go really far on a single server with the default configurations. But what happens when you start
to really push the envelope? When you have so much traffic or load that your server is running at
full capacity?

You'll notice tearing at the seams, and in a pretty consistent fashion too. MySQL is always the first
to go—I/O bound most of the time. Next up, Apache. Loading the entire PHP interpreter for each
HTTP request isn’t cheap, and Apache’s memory footprint will prove it. If you haven’t crashed yet,
Linux itself will start to give up on you—all of those sane defaults that ship with your distribution
just aren’t designed for scale.

What can we possibly do to improve on this tried-and-true model? Well, the easiest thing is to get
better hardware (scale vertically) and split the components up (scale horizontally). This will get you
a little further, but there is a better way. Scale intelligently. Optimize, swapping pieces of your stack
for better software, customize your defaults and build a stack that’s reliable and fault tolerant. You
want to spend your time building an amazing product, not babysitting servers.

The Scalable Stack

After lots of trial and error, I've found what I think is a generic, scalable stack. Let’s call it
LHNMPRR... nothing is going to be as catchy as LAMP!

Linux

We still have Old Reliable, but we’re going to tune the hell out of it. This book assumes the latest
version of Ubuntu Server 12.04, but most recent distributions of Linux should work equally as well.
In some places you may need to substitute apt-get with your own package manager, but the kernel
tweaks and overall concepts should apply cleanly to RHEL, Debian, and CentOS. I'll include kernel
and software versions where applicable to help avoid any confusion.

HAProxy

We’ve dumped Apache and split its job up. HAProxy acts as our load balancer—it’s a great piece of
software. Many people use nginx as a load balancer, but I've found that HAProxy is a better choice
for the job. Reasons why will be discussed in-depth in Chapter 3.

Getting Started 4

nginx

Nginx is an incredible piece of software®. It brings the heat without any bloat and does webserving
extremely well. In addition to having an incredibly low memory and CPU footprint, it is extremely
reliable and can take an ample amount of abuse without complaining.

One of our busiest nginx servers at Twitpic handles well over 6,000 connections per second while
using only 80MB of memory.

e 00 1. root@Ib1: /proc (ssh) o

root at 1bl in /proc

$ curl 127.0.0.1/nginx_status

Active connections: 6486

server accepts handled requests
776361837 776361837 979960630

Reading: 2607 Writing: 131 Waiting: 3748

root at 1bl in /proc

] |

An example of a server with over 6000 active connections

PHP 5.3 / PHP-FPM

There are several ways to serve PHP applications: mod_php, cgi, lighttpd fastcgi??. None of these
solutions come close to PHP-FPM, a FastCGI Process Manager written by the nginx team that’s
been bundled with PHP since 5.3. What makes PHP-FPM so awesome? Well, in addition to being
rock-solid, it’s extremely tunable, provides real-time stats and logs slow requests so you can track
and analyze slow portions of your codebase.

®Apache is great, too. It’s extremely popular and well supported, but Apache + mod_php is not the best tool for the job when you’re dealing
with high volume PHP apps. It’s memory intensive and doesn’t offer full tuning capabilities.

Getting Started 5

MySQL

Most folks coming from a LAMP stack are going to be pretty familiar with MySQL, and I will cover
it pretty extensively. For instance, in Chapter 5 you’ll learn how you can get NoSQL performance
out of MySQL. That being said, this book is database agnostic, and most of the tips can be similarly
applied to any database. There are many great databases to choose from: Postgres, MongoDB,
Cassandra, and Riak to name a few. Picking the correct one for your use case is outside the scope of

this book.

Redis

Redis* can be used as a standalone database, but its primary strength is as a datatype storage system.
Think of it as memcache on steroids. You can use memcache (we still do), but Redis performance is
just as good or better in most scenarios. It is persistent to disk (so you don’t lose your cache in the
case of a crash, which can be catastrophic if your infrastructure can’t deal with 100% cache misses),
and is updated extremely frequently by an opinionated, vocal and smart developer, @antirez.

Resque

Doing work in the background is one of the principal concepts of scaling. Resque’ is one of the
best worker/job platforms available. It uses Redis as a backend so it’s inherently fast and scalable,
includes a beautiful frontend to give you full visibility into the job queue, and is designed to fail
gracefully. Later we’ll talk about using PHP-Resque, along with some patches I've provided, to
build elegant background workers.

What about the AWS Stack?

AWS is awesome. Twitpic is a huge AWS customer—over 1PB of our images are stored on Amazon
S3 and served using CloudFront. Building that kind of infrastructure on our own would be extremely
expensive and involve hiring an entire team to manage it.

That being said, if you are running servers on EC2 full-time and scaling by adding more, you’re
doing it wrong. It’s like using the back of your iPhone to hammer a nail into the wall. It works... it
will get the job done, but it’s going to cost you much more than using the right tools.

Take the plunge and move to bare-metal hardware. It’s cheaper, provides more consistent
performance, and gives you access to a bounty of customized hardware (SSDs, RAID cards, SAS
drives, 512GB of memory). We love SoftLayer, but there are plenty of reliable providers.

Note that I am not advocating against EC2, I am advocating that you use it the way that it was
intended to be used: for on-demand capacity. Sudden increase in traffic? Spin up some EC2 instances

“http://redis.io/
*https://github.com/defunkt/resque

http://redis.io/
https://github.com/defunkt/resque
http://redis.io/
https://github.com/defunkt/resque

Getting Started 6

and handle the burst effortlessly. Using Amazon Virtual Private Cloud, your EC2 instances can
communicate with your bare-metal servers without being exposed to the public internet.

DNS

The first layer that we are going to unravel is DNS. DNS? What!? I thought this was a book on PHP?
DNS is one of those things that we don’t really think about until it’s too late, because when it fails,
it fails in the worst ways.

Don’t believe me? In 2009 Twitter’s DNS was hijacked and redirected users to a hacker’s website
for an hour. That same year, SoftLayer’s DNS system was hit with a massive DDoS attack and took
down their DNS servers for more than six-hours. As a big SoftLayer customer, we dealt with this
firsthand because (at the time) we also used their DNS servers.

The problem with DNS downtime is that it provides the worst user experience possible—users receive
a generic error, page timeouts, and have no way to contact you. It’s as if you don’t exist anymore,
and most users won’t understand (or likely care) why.

As recently as September 2012, GoDaddy’s DNS servers were attacked and became unreachable for
over 24-hours. The worst part? Their site was down too, so you couldn’t move your DNS servers
until their website came back up (24-hours later).

Too many companies are using their domain registrar or hosting provider’s DNS configuration—that
is WRONG! Want to know how many of the top 1000 sites use GoDaddy’s DNS? None of them.

So, should | run my own DNS server?

It’s certainly an option, but I don’t recommend it. Hosting DNS “the right way” involves having
many geographically dispersed servers and an Anycast network. DDoS attacks on DNS are
extremely easy to launch and if you half-ass it, your DNS servers will be the Achilles’ heel to your
infrastructure. You could have the best NoSQL database in the world but it won’t matter if people
can’t resolve your domain.

Almost all of the largest websites use an external DNS provider. That speaks volumes as far as
I’'m concerned—the easiest way to learn how to do something is to imitate those that are successful.

Reddit: Akamai®

Twitter: Dynect’

Amazon: UltraDNS® and Dynect
LinkedIn: UltraDNS

You should plan to pay for a well known, robust DNS SaaS. At Twitpic, we use Dynect Managed
DNS’. It has paid for itself—we’ve had no downtime related to DNS outages since switching. Make

®http://www.akamai.com/html/solutions/enhanced_dns.html
"http://dyn.com

®http://ultradns.com

*http://dyn.com/dns/

http://www.akamai.com/html/solutions/enhanced_dns.html
http://dyn.com
http://ultradns.com
http://dyn.com/dns/
http://dyn.com/dns/
http://www.akamai.com/html/solutions/enhanced_dns.html
http://dyn.com
http://ultradns.com
http://dyn.com/dns/

DNS 8

sure you choose a DNS provider that has a presence close to your target audience, too, especially if
you have a large international userbase.

Here’s what you should look for in a DNS provider:

+ Geographically dispersed servers
 Anycast Network
» Large IP Space (to handle network failures)

0 What is Anycast?

Anycast is a networking technique that allows multiple routers to advertise the
same [P prefix—it routes your clients to the “closest” and “best” servers for their
location. Think of it as load balancing at the network level.

In addition to the providers listed above, Amazon Route53'° is a popular option that is incredibly
cheap, offers a 100% SLA, and has a very user-friendly web interface. Since it’s pay-as-you-go, you
can easily get started and adjust for exact usage needs as you grow.

Name Type Value TTL

scalingphpbook.com. A 174.129.25.170 300
ns-1846.awsdns-38.co.uk.
ns-540.awsdns-03.net.

scalingphpbook.com. NS 1490, awsdns-58.org. 172800

ns-158.awsdns-19.com.
scalingphpbook.com. SOA ns-1846.awsdns-38.co.uk. awsd = 200
www.scalingphpbook.co CNAME | d3dzhg6nialwmr.cloudfront.net 300

DNS Load Distribution

Besides scaling DNS, we can use DNS to help us scale, too. The HAProxy load balancer is integral
to our scalable stack—but what happens when it loses network connection, becomes overloaded, or
just plain crashes? Well it becomes a single point of failure, which equals downtime—it’s a question
of when, not if it will happen.

"®http://aws.amazon.com/route53/

http://aws.amazon.com/route53/
http://aws.amazon.com/route53/

© 00 N O O b W N =

(RN
N S

DNS 9

Traditional DNS load balancing involves creating multiple A records for a single host and passing
all of them back to the client, letting the client decide which IP address to use. It looks something
like this.

> dig A example.com
<<>> DiG 9.7.3-P3 <<>> A example.com

;; QUESTION SECTION:
;example.com. IN A

;; ANSWER SECTION:

example.com. 287 IN A 208.0.113.36
example.com. 287 IN A 208.0.113.34
example.com. 287 IN A 208.0.113.38
example.com. 287 IN A 208.0.113.37
example.com. 287 IN A 208.0.113.35

There are a few drawbacks to this, however. First of all, less-intelligent DNS clients will always
use the first IP address presented, no matter what. Some DNS providers (Dynect and Route53, for
example) overcome this by using a round-robin approach whereby they change the order of the IPs
returned everytime the record is requested, helping to distribute the load in a more linear fashion.

Another drawback is that round-robin won’t prevent against failure, it simply mitigates it. If one
of your servers crashes, the unresponsive server’s IP is still in the DNS response. There are two
solutions that work together to solve this.

1. Use a smart DNS provider that can perform health checks. Dynect offers this feature and
it’s possible to implement it yourself on Route53 using their APIL. If a load balancer stops
responding or becomes unhealthy, it gets removed from the IP pool (and readded once it
becomes healthy again).

2. Even if you remove a server’s IP from the DNS pool, users that have the bad IP cached
will still experience downtime until the record’s TTL expires. Anywhere from 60-300s is a
recommended TTL value, which is acceptable, but nowhere near ideal. We’ll talk about how
servers can “steal” IPs from unhealthy peers using keepalived in Chapter 4.

Dynect has a very intuitive interface for load balancing and performing health checks on your hosts:

DNS

Service Statuses

Address

LB1 (50.23.200.230)

LB2Z (50.23.200.238)

LB3 (50.23.200.239)

DNS Resolution

Serve Count: 1

Health Status

=,

=f,

=,

Status: ok ¢

Health Results

Bttt

Bttt

Bttt

10

The last, and very often overlooked, part of scaling DNS is internal domain resolution. An example
of this is when a PHP application calls an external API and has to resolve the domain of the API
host. Let’s say the application is using the Twitter API—every time you post something to Twitter,
PHP has to look up and determine the IP of api.twitter.com.

PHP accomplishes this by using the libc system call gethostbyname(), which uses nameservers set
in /etc/resolv.conf to look up the IP address. Usually this is going to be set to a public DNS

resolver (like 8.8.8.8) or a local resolver hosted by your datacenter.

So, what’s wrong with this setup? Well, two things:

1. It’s another server that you don’t control. What happens when it’s down? Slow? They block
you? The lowest timeout allowed in /etc/resolv.conf is one second (and the default is
FIVE!), which is too slow for a high-volume website and can cause domino-effect failure at

scale.

2. Most Linux distributions don’t provide a DNS cache by default and that adds extra network
latency to every single DNS lookup that your application has to make.

The solution is to run a DNS cache daemon like nscd, dnsmasq, or bind. I won’t cover BIND because
it’s overkill to run it simply as a cache, but I will talk about nscd and dnsmasq, which work in slightly

different ways.

DNS 11

nscd

nscd (nameserver cache daemon) is the simplest solution to setting up your own internal DNS cache.
Whether or not it’s installed by default is dependent on your Linux distro (it’s not on Ubuntu or
Debian). It’s easy to install and needs zero-configuration. The main difference between nscd and
dnsmasgq is that nscd runs locally on each system while dnsmasq is exposed as a network service and
can provide a shared DNS cache for multiple servers.

> apt-get install nscd
> service nscd start

Pros

+ Extremely easy to setup
« Zero configuration

Cons

« Runs locally only, so each server needs to have it’s own install

dnsmasq

dnsmasq is a lightweight DNS cache server that provides nearly the same feature-set as nscd, but as
a network service.

You setup dnsmasq on a server, let’s call it 198.51.100.10, and set 198.51.100.10 as the nameserver
for all of your other servers. dnsmasq will still go out onto the internet to look up DNS queries for
the first time, but it will cache the result in memory for subsequent requests, speeding up DNS
resolution and allowing you to gracefully deal with failure.

Additionally, you can use dnsmasq as a lightweight internal DNS server with the addn-hosts config-
uration option, allowing you to use local hostnames without having to hardcode IP addresses in your
code (i.e, $memcache->connect (' cache@1 .example') instead of $memcache->connect('198.51.100.15")).

Assuming a network setup based on the table below, here is how we’d setup dnsmasq and point our
servers to it:

Hosts 1P

dnsmasq server 192.51.100.10
server0l.example 192.51.100.16
server02.example 192.51.100.17

On your dnsmasq server:

© 00 N O O b W N =

U SN
O O b W N =~ O

W N -

DNS 12

> apt-get install dnsmasq
> vi /etc/dnsmasq.conf

cache-size=1000
listen-address=198.51.100.10
local-tt1=60

no-dhcp-inter face=eth@
no-dhcp-inter face=eth1
addn-hosts=/etc/dnsmasq. hosts

> vi /etc/dnsmasq.hosts

198.51.100.16 server@1.example
198.51.100.17 server@2.example

> service dnsmasq restart

local-ttl sets the time-to-live for any hosts you define in /etc/hosts or /etc/dnsmasq.hosts
cache-size defines the size of the DNS cache.

no-dhcp-inter face disables all services provided by dnsmasq except for dns. Without this, dnsmasq
will provide dhcp and tftp as well, which you do not want in most scenarios.

On EC2, after restarting dnsmasq you may need to add the following line to /etc/hosts:
127.0.0.1 ip-10-x-x-x
And then on your other hosts:

> vi /etc/resolv.conf

nameserver 198.51.100.10
options rotate timeout:1

The rotate option tells linux to rotate through the nameservers instead of always using the first
one. This is useful if you have more than one nameserver and want to distribute the load.

The timeout:1 option tells linux that it should try the next nameserver if it takes longer than 1-
second to respond. You can set it to any integer between 1 and 30. The default is 5-seconds and it’s
capped at 30-seconds. Unfortunately, the minimum value is 1-second, it would be beneficial to set
the timeout in milliseconds.

=N O O b W N -

DNS 13

When do | need this?

There is virtually no negative impact to implementing a caching nameserver early; however, it does
add another service to monitor—it’s not a completely free optimization. Essentially, if any of your
pages require a DNS resolution, you should consider implementing a DNS cache early.

Want to know how many uncached DNS requests your server is currently sending? With tcpdump
you can see all of the DNS requests going out over the network.

> apt-get install tcpdump
> tcpdump -nnp dst port 53

©09:52 IP 198.51.100.16 > 198.51.100.10.53: A? graph.facebook.com.
©09:52 IP 198.51.100.16 > 198.51.100.10.53: AAAA? graph. facebook.com.
©9:52 IP 198.51.100.16 > 198.51.100.10.53: A? api.twitter.com.

09:52 IP 198.51.100.16 > 198.51.100.10.53: AAAA? api.twitter.com.

The -nn option ensures tcpdump itself does not resolve IP Addresses or protocols to names.
The -p option disables promiscuous mode, to minimize adverse impact to running services.

The dst port 53 only shows DNS requests sent (for brevity), to see how long the application may
have blocked waiting for a response (i.e. to see the request along with the response), exclude the
‘dst’ portion.

The above example shows how a single HTTP GET could cause four DNS requests to be sent to 3rd
party APIs that you may be using. Using a caching DNS resolver, such as dnsmasq or nscd, helps
reduce the blocking period and possible cascading failures.

